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Determination of Binary Diffusion Coefficients of 
Benzene, Phenol, Naphthalene and Caffeine in 
Superaritieal GO, between 308 and 933 K in the Pressure 
Flange 80 t~ 169 Bar with Supercritical Fluid 
Chromatography (SFC) 

REINHARD FEIST and GERHARD M. SCHNEIDER 

INSTITUTE O F  PHYSICAL CHEMISTRY 
UNIVERSITY OF BOCyUM 
4630 BOCHUM, FEDERAL REPUBLIC O F  GERMANY 

ABSTRACT 

Binary diffusion coeffictents D12 have been deterqiqed fqr 
benzene, phenol, naphthalene and caffeine in supercritical 
C02 at 4OoC between 80 and 160 bar using the chromatographic 
peak-broadengng method (CPB). The observed diffqsipn coefficients 
are of the order of cm2/s and decrease by about 50% for a 
pressure rise from 80 to 160 bar. 
effect of temperature on D12 was investigated between 35 and 
6OoC at a constant C02 density of 0.6 g/cm3; the energy of 
activation was found to be 4 . 7  kJ/mol. With increasing molec- 
ular size and polarity of the diffusing compound, adsorption 
effects are observed which can lead to serious errors. 

For naphthalene in CO2 the 

INTRODUCTION 

In Supercritical Fluid Chromatography (SFC) highly com- 

pressed fluid phases mostly at temperatures somewhat above 

their critical temperatures are used as mobile phases. Since 

the early sixties SFC has found interesting and important appli- 

cations, especially in the separation of low volatile and 

thermolabile compounds (for a review and references see (1)). 
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262 FEIST AND SCHNEIDER 

However, d i f f u s i o n  d a t a  of medium m o l e c u l a r  weight  com- 

pounds in compressed g a s e s  are s t i l l  r a t h e r  s c a r c e  though they 

p l ay  a n  i m p o r t a n t  r o l e  conce rn ing  mass t r a n s p o r t  phenomena i n  

chromatographic  columns as w e l l  as i n  t e c h n i c a l  p l a n t s  f o r  t h e  

e x t r a c t i o n  of n a t u r a l  p r o d u c t s  w i t h  s u p e r c r i t i c a l  phases  ( f l u i d  

e x t r a c t i o n ) .  I n  t h e  p r e s e n t  pape r  w e  s h a l l  p r e s e n t  and d i s c u s s  

some r e c e n t  r e s u l t s  (2 )  on t h e  e f f e c t  o f  p r e s s u r e  and t e m p e r a t u r e  

on b i n a r y  d i f f u s i o n  c o e f f i c i e n t s  i n  s u p e r c r i t i c a l  C02 which we 

have o b t a i n e d  u s i n g  t h e  ch romatograph ic  peak-broadening method 

(CPB). 
i 'aylor (3)  and A r i s  ( 4 )  w a s  i n d e p e n d e n t l y  developed by Giddings 

and Seager  (5) ,  Bohemen and P u r n e l l  (6)  and  o t h e r  worke r s  i n  1960 

and w a s  f i r s t  used t o  d e t e r m i n e  d i f f u s i o n  c o e f f i c i e n t s  i n  gaseous  

m i x t u r e s .  Later t h e  CPB t e c h n i q u e  w a s  ex t ended  t o  dense  g a s e s  

(7 ,8 )  and ,  more r e c e n t l y ,  t o  l i q u i d  sys t ems  ( 9 , l O ) .  

'This t e c h n i q u e  which i s  based  on t h e  fundamental  work of 

The t h e o r e t i c a l  f o u n d a t i o n s  of t h e  method w i l l  o n l y  b e  

s h o r t l y  d i s c u s s e d  b e c a u s e  d e t a i l e d  r ev iews  have a l r e a d y  been 

pub l i shed  ( 1 1 , 1 2 ) .  

THEORY 

As shown by Tay lo r  (3)  t h e  d i s p e r s i o n  of  a p u l s e  of a s o l u t e  

i n  a f u l l y  developed l a m i n a r  f l o w  i s  t h e  r e s u l t  of t h e  combined 

a c t i o n  of c o n v e c t i o n  a l o n g  t h e  a x i s  of t h e  column and molecu la r  

d i f f u s i o n  i n  t h e  r a d i a l  d i r e c t i o n .  The s o l u t i o n  of t h e  b a s i c  

mass b a l a n c e  e q u a t i o n  o b t a i n e d  under  c e r t a i n  a s sumpt ions  and  

boundary c o n d i t i o n s  ( 4 , 7 )  l e a d s  t o  a n  e x p r e s s i o n  which r e p r e s e n t s  

t h e  p r o f i l e  of t h e  a v e r a g e  c o n c e n t r a t i o n  S as a f u n c t i o n  of t h e  

a x i a l  d i s t a n c e  x and t i m e  t .  L e v e n s p i e l  and Smith (13) showed 

t h a t  t h i s  c o n c e n t r a t i o n  p r o f i l e  becomes Gauss i an  when 
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BINARY DIFFUSION COEFFICIENTS W I T H  SFC 263 

The v a r i a n c e  i n  l e n g t h  u n i t s  i s  t h e n  a f u n c t i o n  of t h e  s o c a l l e d  

e f f e c t i v e  d i f f u s i o n  c o e f f i c i e n t  and t h e  t i m e  of f low tR: 

2 
R o (x) = 2 D e f f  * t 

where 

D12 i s  t h e  b i n a r y  d i f f u s i o n  c o e f f i c i e n t ,  E t h e  a v e r a g e  v e l o c i t y  

of t h e  mob i l e  phase ,  ro t h e  i n n e r  r a d i u s  of t h e  t u b e  and 1 i t s  

l e n g t h .  Using t h e  d e f i n i t i o n  of p l a t e  h e i g h t  i n  chromatography 

one o b t a i n s  t h e  p l a t e  h e i g h t  e q u a t i o n  f o r  a n  empty s t r a i g h t c o l u m n  

w i t h  c i r c u l a r  c r o s s - s e c t i o n  

which i s  i d e n t i c a l  t o  t h e  r e s u l t s  o b t a i n e d  from t h e  van Deemter, 

Golay o r  G idd ings  e q u a t i o n s  i n  t h e  c a s e  of y = 1 (no pack ing)  

and k '  = 0 (no s o r b e n t  phase )  ( 1 4 ) .  The v e l o c i t y  which minimizes  

H i s  c a l l e d  t h e  optimum v e l o c i t y  and g i v e n  by 

1 2  D 
ii =mF- 

o p t  0 

Rearrangement of Eq. (5) y i e l d s :  

2 

12 4 3 
D = [ H 2 (H2 - -2) 1/2] ( 7 )  
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264 FEIST AND SCHNEIDER 

According t o  Gidd ings  and Seage r  (15) t h e  n e g a t i v e  r o o t  of 

Eq. ( 7 )  is p h y s i c a l l y  mean ingfu l  a t  v e l o c i t i e s  h i g h e r  t h a n  G 
o p t  

which i s  u s u a l l y  t h e  c a s e  i n  l i q u i d  and d e n s e  g a s  sys t ems  where 

C is  v e r y  small. The p l a t e  h e i g h t  H can b e  eas i ly  o b r a i n e d  

from expe r imen t  u s i n g  t h e  e x p r e s s i o n  ( s e e ,  e . g . ,  (16))  
o p t  

2 
H =  1'w1/2 

'1 

5.545.t; 

where w is t h e  peak w i d t h  a t  h a l f  h e i g h t  i n  t i m e  u n i t s  d i r e c t l y  

t a k e n  from t h e  r e c o r d e r  p l o t  and tR t h e  r e t e n t i o n  t i m e .  

t hen  o b t a i n e d  from Eq. ( 7 )  u s i n g  t h e  n e g a t i v e  r o o t .  

1 / 2  

D12 i s  

EXPERIMENTAL 

Apparatus  

i h e  a p p a r a t u s  w a s  a s e l f - d e s i g n e d  f l u i d  chromatograph iden-  

t i c a l  t o  t h a t  u sed  by Swaid (8 ) .  M o d i f i c a t i o n s  w e r e  on ly  made 

c o n c e r n i n g  t h e  i n j e c t i o n  sys t em ( s e e  be low) .  The mobi l e  phase  

w a s  C 0 2  (TC = 31.1OC) which was compressed by an  e l e c t r i c a l l y  

d r i v e n  doub le  p l u n g e r  pump. A s e n s i t i v e  e l e c t r o n i c  r e g u l a t o r  k e p t  

t h e  p r e s s u r e  c o n s t a n t  w i t h i n  kO.01 b a r .  T h e  c o n d i t i o n i n g  sys t em,  

t h c  i n j e c t i o n  sys t em and  t h e  column w e r e  mounted i n  an  a i r  thermo- 

st'it, t l ie  t e m p e r a t u r e  b e i n g  c o n s t a n t  w i t h i n  M . 0 2  K .  I n  o r d e r  t o  

avo id  a d d i t i o n a l  s o l v e n t s  i n  t h e  c a s e  of s o l i d  test compounds 

( e . p . ,  n a p h t h a l e n e )  t h e  sample w a s  f i r s t  d i s s o l v e d  i n  compressed 

CO i n  a s e p a r a t e  a u t o c l a v e  and t h e n  samples  o f  t h i s  s o l u t i o n  were 

i n t r o d u c e d  i n t o  t h e  f low by means o f  a commercial  6-port  v a l v e  

combined w i t h  a sample l o o p .  D e t e c t i o n  w a s  c a r r i e d  o u t  u s i n g  a 

h igh  p r e s s u r e  UV d e t e c t o r  whose o p t i c a l  c e l l  w a s  h e l d  a t  column 

t e m p e r a t u r e .  Leav ing  t h e  d e t e c t o r  t h e  mob i l e  p h a s e  w a s  expanded 

by a two-stage r e d u c i n g  v a l v e  p r o v i d i n g  a c o n s t a n t  f low ra te  

( + I % )  which w a s  measured w i t h  a s o a p  b u b b l e  f l o w  meter. For pVT 

c a l c u l a t i o n s  a n  e q u a t i o n  of  s t a t e  g i v e n  by IUPAC w a s  u sed  ( 1 7 ) .  

2 
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BINARY DIFFUSION COEFFICIENTS W I T H  SFC 265 

'To e l i m i n a t e  t h e  i n i t i a l  v a r i a n c e  of t h e  s o l u t e  p u l s e  and t h e  

a d d i t i o n a l  peak b roaden ing  caused by dead volumes, t h e  two column 

method (15) was a p p l i e d .  The l e n g t h s  of t h e  columns were 9666 and 

175.5 cm r e s p e c t i v e l y  b o t h  hav ing  an i n t e r n a l  r a d i u s  o f  0.0246 c m .  

We made abou t  s i x  subsequen t  i n j e c t i o n s  d u r i n g  one run  a t  a f low 

rate  of abou t  1 cm/s where a c c o r d i n g  t o  p r e v i o u s  i n v e s t i g a t i o n s  (8)  

t h e  i n f l u e n c e  of s econdary  f low i s  n e g l i g i b l e .  The v a r i a n c e s  o f  

such  a series of peaks a g r e e d  w i t h i n  3 % ;  t h e  o v e r a l l  p r e c i s i o n  of 

t h e  p r e s e n t e d  D12 v a l u e s  i s  e s t i m a t e d  t o  b e  about  6%. 

Sources  of E r r o r s  

A s  t h i s  s u b j e c t  h a s  a l r e a d y  been t r e a t e d  e x t e n s i v e l y  by o t h e r  

a u t h o r s  (7 ,10 ,11 ,16 )  o n l y  t h e  most impor t an t  e f f e c t s  s h a l l  b e  

mentioned h e r e :  

a )  i n i t i a l  peak d i s p e r s i o n  

b )  dead volume 

c )  s econdary  f low 

d )  p r e s s u r e  d rop  

e )  a d s o r p t i o n  

The e f f e c t s  a )  and b )  which l e a d  t o  D12 v a l u e s  b e i n g  t o o  low w e r e  

e l i m i n a t e d  by u s e  of t h e  two column s u b t r a c t i o n  t e c h n i q u e .  A s  

shown by Swaid (8) secondary  f l o w  caused by column c o i l i n g  c a n  

b e  n e g l e c t e d  i f  t h e  l i n e a r  f low v e l o c i t y  is  s u f f i c i e n t l y  s m a l l .  

I n  t h i s  c a s e  a l s o  t h e  p r e s s u r e  drop (2 0.4 b a r )  i s  n e g l i g i b l e .  

However, e f f e c t  e )  may l e a d  t o  s e r i o u s  e r r o r s  i n  t h e  c a s e  of 

r i s i n g  molecu la r  s i z e  and p o l a r i t y  of t h e  d i f f u s i n g  compound 

e s p e c i a l l y  i n  t h e  low d e n s i t y  r e g i o n  where t h e  s o l v e n t  power of 

t h e  mob i l e  p h a s e  is a p p r e c i a b l y  r educed .  F i g .  1 shows t h e  sepa-  

r a t i o n  of c a f f e i n e  from u n r e t a r d e d  benzene as a consequence of 

a d s o r p t i o n  on t h e  i n n e r  column w a l l s .  The shape  of t h e  c a f f e i n e  

peak i n d i c a t e s  a curved a d s o r p t i o n  i s o t h e r m  which makes a n  

e v a l u a t i o n  of d i f f u s i o n  d a t a  i m p o s s i b l e .  By r a i s i n g  t h e  p r e s s u r e  

of t h e  mob i l e  phase  t h i s  e f f e c t  cou ld  b e  e l i m i n a t e d  n e a r l y  
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266 FEIST AND SCHNEIDER 

LOOC, 105 bar 

min 

FIGURF 1. E f f e c t  of wall a d s o r p t i o n .  S e p a r a t i o n  o f  c a f f e i n e  ( b )  
f r o x  u n r e t a r d e d  benzene (a). Unpacked s tee l  c a p i l l a r y  
column, 1 = 9666 cm; v e l o c i t y  of mob i l e  phase ,  1 .135 
cm/s.  

comple t e ly .  Hlswever, e l u t i o n  p r o f i l e s  w i t h  a pronounced t a i l i n g  

were always t a k e n  as a n  i n d i c a t o r  f o r  i n t e r a c t i o n  between t h e  

d i f f u s i n g  s p e c i e s  and t h e  column s u r f a c e  and o n l y  symmet r i ca l  

peaks were used  f o r  t h e  c a l c u l a t i o n  of d i f f u s i o n  c o e f f i c i e n t s .  

RESULTS AND DISCUSSION 

D,, as  a F u n c t i o n  o f  Dens i ty  a t  Cons tan t  Temperature  

The b i n a r y  d i f f u s i o n  c o e f f i c i e n t s  of benzene,  pheno1,naphtha-  

l e n e  and c a f f e i n e  have been de te rmined  as a f u n c t i o n  of t h e  CO 

d e n s i t y  a t  40OC. 

t h e  co r re spond ing  p r e s s u r e s  b e i n g  80 and 160 b a r  r e s p e c t i v e l y .  

The r e s u l t s  a r e  p l o t t e d  i n  F ig .  2 .  Measurements on c a f f e i n e  were 

l i m i t e d  t o  t h e  h i g h  p r e s s u r e  r e g i o n  (2 125 b a r )  because  o f  consid-  

e r a b l e  a d s o r p t i o n  e f f e c t s  which have a l r e a d y  been d i s c u s s e d  above. 
-4 2 The d i f f u s i o n  c o e f f i c i e n t s  are a l l  of t h e  o r d e r  o f  10 c m  / 3  and 

d e c r e a s e  w i t h  i n c r e a s i n g  m o l e c u l a r  we igh t  and s i z e  of t h e  d i f f u s i n g  

compound. By r a i s i n g  t h e  p r e s s u r e  from 80 t o  160 b a r  t h e d i f f u s i o n  

2 3  The d e n s i t y  r a n g e  ex tended  from 0 .3  t o  0 .8  g/cm , 
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I I I I 1 I 

LO O C  0 Benzene in CO, 
A Pknol in CO, 

Naphthulene in CO, 
+ Caffeine in CO, 

I I 1 I I I 

0 3  0 5  O 7  p/gcm 

FIGURE 2. D 1 2  of  benzene ,  pheno l ,  n a p h t h a l e n e  and c a f f e i n e  i n  
s u p e r c r i t i c a l  C 0 2  as a f u n c t i o n  of C02 d e n s i t y  a t 4 0 ° C .  

L I I 1 I 

0 T = L O ° C  

3 -  

0 Benzene 

A Nophthalene 

1 2 3 L 5 
~-1 .10-~/~-~  c m s 

N 

E 
,-37- 
n 

u 
\ .- - 
0 
0 - 

-39 - 
0 Benzene 
A Naphthalene 

-37 -35 -33 
log (q/gcrn-l s-') 

- -3.5- 
F 
I 
u) 

u 
N 

E 
,-37- 
n 
\ .- - 
0 
0 - 

-39 - 

A Naphthalene 

-37 -35 -33 
log (q/gcrn-l s-') 

FIGURE 3. Dependence of  D 1 2  on solvent v i s c o s i t y .  

a .  D!2 v e r s u s  r e c i p r o c a l  v i s c o s i t y .  Test of  t h e  S tokes -  
E i n s t e i n  e q u a t i o n  

b .  l o g  D 1 2  v e r s u s  l o g  I- 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
4
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



268 FEIST AND SCHNEIDER 

I o e t f i c i e n t s  d e c r e a s e  by a b o u t  50% b e c a u s e  of  t h e  i n c r e a s i n g  

c o l l i s i o n  f r equency  and the reduced  mean f r e e  p a t h .  

P ig .  3a 2;hows D I 2  as a f u n c t i o n  of t h e  r e c i p r o c a l  CO vis- 

c.osity which was t a k e n  from Refe rence  18. Obv ious ly  t h e  Stokes-  

L i n s t c i n  equal- ion does  n o t  h o l d  i n  t h e  d e n s i t y  r a n g e  i n v e s t i g a t e d  

l e a d i n g  t o  a d e c r e a s e  of t h e  a p p a r e n t  m o l e c u l a r  d i a m e t e r  of t h e  

.;elute w i t h  i n c r e a s i n g  d e n s i t y .  

v e r s u s  l o g  n .  The p o i n t s  can  f a i r l y  w e l l  be  f i t t e d  by  s t r a i g h t  

I i n e s  c o r r e s p o n d i n g  t o  D 

c o r r e l a t i o n  between D and t h e  s o l v e n t  v i s c o s i t y  h a s  a l r e a d y  been 

1'ropost.d f o r  some l i q u i d  sys t ems  (19 ) .  

I n  F i g .  3b l o g  D I 2  i s  p l o t t e d  

2. n-' where q; 0.66. An a n a l o g o u s  12 

12  

A comparison w i t h  the Enskog-Thorne t h e o r y  (20) showed t h a t  

i n  a l l  c a s e s  {-he measured d i f f u s i o n  c o e f f i c i e n t s  l i e  w e l l  above 

t h e  t h e o r e t i c a l  v a l u e s ;  t h e s e  f i n d i n g s  a r e  c o n s i s t e n t  w i t h  

nrevioiis r e s u l t s  of other a u t h o r s  ( 7 , 8 ) .  Values  f o r  F were found 

to be  10.8 t o  1 . 2  where F 1 (D12*p)/(D12-p)id w i t h  (D12.p)id b e i n g  

86 - 

8 7 .  

-a8 1 
T - ' .  1 0 3 ~ ~  

30  31 32 33 

FTCURE 4 .  E f f e c t  of  t e m p e r a t u r e  on  D12 a t  c o n s t a n t  d e n s i t y .  
I n  D12 v e r s u s  r e c i p r o c a l  a b s o l u t e  temperatures f o r  
n a p h t h a l e n e  i n  s u p e r c r i t i c a l  CO at p = 0.6  g/cm3. 2 
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c a l c u l a t e d  on t h e  b a s i s  of t h e  low d e n s i t y  t h e o r y  f o r  a g a s  a t  

t h e  same t empera tu re .  

D12 as a Func t ion  of Temperature  a t  Cons tan t  Dens i ty  
- 

P r e v i o u s  i n v e s t i g a t i o n s  ( s e e  e . g .  (8 ) )  have shown t h a t  b i n a r y  

d i f f u s i o n  c o e f f i c i e n t s  i n  dense  g a s e s  e x h i b i t  a s t r o n g  dependence 

on t e m p e r a t u r e  i f  t h e  p r e s s u r e  of t h e  sys t em is  k e p t  c o n s t a n t .  

T h i s  i s  mainly caused  by t h e  r e s u l t i n g  d e n s i t y  change o f  t hemed ium 

A t  c o n s t a n t  d e n s i t y ,  however,  t h e  e f f e c t  o f  t e m p e r a t u r e  on D 
shou ld  b e  d i s t i n c t l y  s m a l l e r .  

12 

F i g . 4  shows t h e  r e s u l t s  which have  been  o b t a i n e d  f o r  naph- 

t h a l e n e  i n  C 0 2  between 35 and 6OoC a t  a c o n s t a n t  d e n s i t y  of 

0.6 g/cm . From t h e  Ar rhen ius  p l o t  t h e  ene rgy  o f  a c t i v a t i o n  f o r  

t h e  d i f f u s i o n  p r o c e s s  was found t o  b e  4 .7  kJ/mol which i s  abou t  

h a l f  t h e  v a l u e  t h a t  i s  found i n  t h e  c a s e  of t y p i c a l  o r g a n i c  sol-  

v e n t s .  

3 
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